Wednesday, 31 August 2011

Practical Labs on Friday

Please be advised that you will all attend a practical lab on Friday. Please get your booking forms in thru your class captains. I have not been feeling well......i am feeling much better today. Please keeep working at your studies with all your hearts. Love you all.


B.J. Chitsenga

Wednesday, 10 August 2011

How Motherboards Work

A motherboard by itself is useless, but a computer has to have one to operate. The motherboard's main job is to hold the computer's microprocessor chip and let everything else connect to it. Everything that runs the computer or enhances its performance is either part of the motherboard or plugs into it via a slot or port.
The shape and layout of a motherboard is called the form factor. The form factor affects where individual components go and the shape of the computer's case. There are several specific form factors that most PC motherboards use so that they can all fit in standard cases.


The form factor is just one of the many standards that apply to motherboards. Some of the other standards include:
  • The socket for the microprocessor determines what kind of Central Processing Unit (CPU) the motherboard uses.
  • The chipset is part of the motherboard's logic system and is usually made of two parts -- the northbridge and the southbridge. These two "bridges" connect the CPU to other parts of the computer.
  • The Basic Input/Output System (BIOS) chip controls the most basic functions of the computer and performs a self-test every time you turn it on. Some systems feature dual BIOS, which provides a backup in case one fails or in case of error during updating.
  • The real time clock chip is a battery-operated chip that maintains basic settings and the system time. 



Sockets and CPCs

The CPU is the first thing that comes to mind when many people think about a computer's speed and performance. The faster the processor, the faster the computer can think. In the early days of PC computers, all processors had the same set of pins that would connect the CPU to the motherboard, called the Pin Grid Array (PGA). These pins fit into a socket layout called Socket 7. This meant that any processor would fit into any motherboard.
Today, however, CPU manufacturers Intel and AMD use a variety of PGAs, none of which fit into Socket 7. As microprocessors advance, they need more and more pins, both to handle new features and to provide more and more power to the chip.
Current socket arrangements are often named for the number of pins in the PGA. Commonly used sockets are:
  • Socket 478 - for older Pentium and Celeron processors
  • Socket 754 - for AMD Sempron and some AMD Athlon processors
  • Socket 939 - for newer and faster AMD Athlon processors
  • Socket AM2 - for the newest AMD Athlon processors
  • Socket A - for older AMD Athlon processors 
The newest Intel CPU does not have a PGA. It has an LGA, also known as Socket T. LGA stands for Land Grid Array. An LGA is different from a PGA in that the pins are actually part of the socket, not the CPU.
Anyone who already has a specific CPU in mind should select a motherboard based on that CPU. For example, if you want to use one of the new multi-core chips made by Intel or AMD, you will need to select a motherboard with the correct socket for those chips. CPUs simply will not fit into sockets that don't match their PGA.
The CPU communicates with other elements of the motherboard through a chipset.

CHIPSETS

The chipset is the "glue" that connects the microprocessor to the rest of the motherboard and therefore to the rest of the computer. On a PC, it consists of two basic parts -- the northbridge and the southbridge. All of the various components of the computer communicate with the CPU through the chipset.
The northbridge connects directly to the processor via the front side bus (FSB). A memory controller is located on the northbridge, which gives the CPU fast access to the memory. The northbridge also connects to the AGP or PCI Express bus and to the memory itself.
The southbridge is slower than the northbridge, and information from the CPU has to go through the northbridge before reaching the southbridge. Other busses connect the southbridge to the PCI bus, the USB ports and the IDE or SATA hard disk connections.
Chipset selection and CPU selection go hand in hand, because manufacturers optimize chipsets to work with specific CPUs. The chipset is an integrated part of the motherboard, so it cannot be removed or upgraded. This means that not only must the motherboard's socket fit the CPU, the motherboard's chipset must work optimally with the CPU.

BUS SPEED

A bus is simply a circuit that connects one part of the motherboard to another. The more data a bus can handle at one time, the faster it allows information to travel. The speed of the bus, measured in megahertz (MHz), refers to how much data can move across the bus simultaneously.
Bus speed usually refers to the speed of the front side bus (FSB), which connects the CPU to the northbridge. FSB speeds can range from 66 MHz to over 800 MHz. Since the CPU reaches the memory controller though the northbridge, FSB speed can dramatically affect a computer's performance.
Here are some of the other busses found on a motherboard:
  • The back side bus connects the CPU with the level 2 (L2) cache, also known as secondary or external cache. The processor determines the speed of the back side bus.
  • The memory bus connects the northbridge to the memory.
  • The IDE or ATA bus connects the southbridge to the disk drives.
  • The AGP bus connects the video card to the memory and the CPU. The speed of the AGP bus is usually 66 MHz.
  • The PCI bus connects PCI slots to the southbridge. On most systems, the speed of the PCI bus is 33 MHz. Also compatible with PCI is PCI Express, which is much faster than PCI but is still compatible with current software and operating systems. PCI Express is likely to replace both PCI and AGP busses.
The faster a computer's bus speed, the faster it will operate -- to a point. A fast bus speed cannot make up for a slow processor or chipset.


Computer Memory

We've established that the speed of the processor itself controls how quickly a computer thinks. The speed of the chipset and busses controls how quickly it can communicate with other parts of the computer. The speed of the RAM connection directly controls how fast the computer can access instructions and data, and therefore has a big effect on system performance. A fast processor with slow RAM is going nowhere.
The amount of memory available also controls how much data the computer can have readily available. RAM makes up the bulk of a computer's memory. The general rule of thumb is the more RAM the computer has, the better.

Much of the memory available today is dual data rate (DDR) memory. This means that the memory can transmit data twice per cycle instead of once, which makes the memory faster. Also, most motherboards have space for multiple memory chips, and on newer motherboards, they often connect to the northbridge via a dual bus instead of a single bus. This further reduces the amount of time it takes for the processor to get information from the memory.
200-pin DDR SODIMM RAM




A motherboard's memory slots directly affect what kind and how much memory is supported. Just like other components, the memory plugs into the slot via a series of pins. The memory module must have the right number of pins to fit into the slot on the motherboard.

simm

64MB SDRAM SIMM
 
In the earliest days of motherboards, virtually everything other than the processor came on a card that plugged into the board. Now, motherboards feature a variety of onboard accessories such as LAN support, video, sound support and RAID controllers.
Motherboards with all the bells and whistles are convenient and simple to install. There are motherboards that have everything you need to create a complete computer -- all you do is stick the motherboard in a case and add a hard disk, a CD drive and a power supply. You have a completely operational computer on a single board.
For many average users, these built-in features provide ample support for video and sound. For avid gamers and people who do high-intensity graphic or computer-aided design (CAD) work, however, separate video cards provide much better performance.

Tuesday, 9 August 2011

Computer Form Factor

In computing, a form factor specifies the physical dimensions of major system components. Specifically, in the IBM PC compatible industry, standard form factors ensure that parts are interchangeable across competing vendors and generations of technology, while in enterprise computing, form factors ensure that server modules fit into existing rackmount systems. Traditionally, the most significant specification is for that of the motherboard, which generally dictates the overall size of the case. Small form factors have been developed and implemented, but further reduction in overall size is hampered by current power supply technology.

A PC motherboard is the main circuit board within a typical desktop computer, laptop or server. Its main functions are as follows:
  • to serve as a central backbone to which all other modular parts such as CPU, RAM, and hard drives can be attached as required to create a modern computer;
  • to accept (on many motherboards) different components (in particular CPU and expansion cards) for the purposes of customization;
  • to distribute power to PC components;
  • to electronically co-ordinate and interface the operation of the components.
As new generations of components have been developed, the standards of motherboards have changed too; for example, with AGP being introduced, and more recently PCI Express. However, the standardized size and layout of motherboard have changed much more slowly, and are controlled by their own standards. The list of components a motherboard must include changes far more slowly than the components themselves. For example, north bridge controllers have changed many times since their introduction, with many manufacturers bringing out their own versions, but in terms of form factor standards, the requirement to allow for a north bridge has remained fairly static for many years.
Although it is a slower process, form factors do evolve regularly in response to changing demands. The original PC standard (AT) was superseded in 1995 by the current industry standard ATX, which still dictates the size and design of the motherboard in most modern PCs. The latest update to the ATX standard was released in 2007. A divergent standard by chipset manufacturer VIA called EPIA (also known as ITX, and not to be confused with EPIC) is based upon smaller form factors and its own standards.

Differences between form factors are most apparent in terms of their intended market sector, and involve variations in size, design compromises and typical features. Most modern computers have very similar requirements, so form factor differences tend to be based upon subsets and supersets of these. For example, a desktop computer may require more sockets for maximal flexibility and many optional connectors and other features on-board, whereas a computer to be used in a multimedia system may need to be optimized for heat and size, with additional plug-in cards being less common. The smallest motherboards may sacrifice CPU flexibility in favor of a fixed manufacturer's choice.

Questions

1. Identify the names, purposes and characteristics of  motherboards. 
2. Identify the names, purposes and characteristics CPUs
3. Identify the names, purposes and characteristics cooling system
4. Identify the names, purposes and characteristics ROM and RAM
5. Identify the names, purposes and characteristics internal Cables

Please answer these online by the end of Friday 12th August 2011

Please be advised that in your groups you have to register for practical labs every friday. Please request  for the lab registration form. This is on a first come first served basis.

Tuesday, 2 August 2011

Cisco IT Essentials Basics

The IT Essential PC Hardware and Software curriculum provides an introduction to the computer hardware and software skills needed to help meet the growing demand for entry-level information and communication technology (ICT) professionals. The curriculum covers the fundamentals of PC technology, networking, and security, and also provides an introduction to advanced concepts. Students who complete this course will be able to describe the internal components of a computer, assemble a computer system, install an operating system, and troubleshoot using system tools and diagnostic software. Hands-on labs and Virtual Laptop and Virtual Desktop learning tools help students develop critical thinking and complex problem-solving skills. Cisco Packet Tracer simulation-based learning activities promote the exploration of network and networking security concepts and allow students to experiment with network behavior.
IT Essentials: PC Hardware and Software is a hands-on, career-oriented e-learning solution with an emphasis on practical experience to help students develop fundamental computer skills, along with essential career skills. The curriculum helps students prepare for entry-level ICT career opportunities and the CompTIA A+ certification, which helps students differentiate themselves in the marketplace to advance their careers. In addition, the course provides a learning pathway to the CCNA Discovery and CCNA Exploration curricula.